
When you buy through links on our articles, Future and its syndication partners may earn a commission.
Earth's orbital environment is becoming increasingly crowded. Thousands of satellites—many of them inactive, damaged, or out of fuel—now circle the planet alongside fragments of debris from past collisions.
As more and more satellites enter orbit, one of the biggest questions becomes: how can these satellites approach and maneuver around each other safely? To answer that question, Luxembourg-based companies LMO and ClearSpace carried out a carefully designed simulation using the European Space Agency's Guidance, Navigation and Control Rendezvous, Approach and Landing Simulator (GRALS).
What is it?
GRALS is part of ESA's Guidance, Navigation and Control Test Facilities and is built to recreate close-proximity operations in space with remarkable realism. The satellite model shown in this image was developed by ClearSpace to replicate the geometry, materials, and visual complexity of real satellites.
Its crinkled gold thermal insulation, metallic structures, and the cup-shaped reflective thruster are not just aesthetic details but critical features that influence how light behaves in space and how cameras perceive an object during a rendezvous.
To ensure reliability, engineers combine computer-generated imagery used to train AI systems with physical testing on increasingly realistic models. Smaller models simulate long-range approaches, while larger, high-fidelity replicas like the one shown are used to test the most delicate, close-range phases of a rendezvous.
Where is it?
This photo was taken at the ESA's technical center, ESTEC, in the Netherlands.
Why is it amazing?
The thousands of satellites orbiting Earth pose growing risks to operational spacecraft and to the long-term sustainability of space activities. Before a spacecraft can refuel, repair, or safely deorbit another satellite, it must be able to see, identify, and approach its target with exceptional accuracy. Vision-Based Navigation systems are key to making this possible. Much like self-driving cars rely on cameras and AI to interpret their surroundings, VBN-equipped spacecraft must interpret light, shadow, reflections, and rapidly changing viewpoints in the harsh environment of space.
Facilities like GRALS play a critical role in bridging the gap between theory and reality. By testing real hardware against realistic satellite models under space-like lighting conditions, engineers can expose weaknesses, validate AI training, and build confidence that autonomous systems will behave safely once deployed in orbit.
Want to learn more?
You can learn more about satellite crowding and space junk.
LATEST POSTS
- 1
Manual for Tracking down One of a kind Store Inns - 2
Regeneron's experimental therapy combo effective in untreated cancer patients - 3
Putting pig organs in people is OK in the US, but growing human organs in pigs is not – why is that? - 4
NASA astronauts take new moonsuit for a swim | Space photo of the day for Nov. 28, 2025 - 5
Defense Minister Katz moves to extend IDF service to 36 months
The most effective method to Examine a Cellular breakdown in the lungs Finding with Family
Trump said affordability is a ‘hoax’ in his Pennsylvania speech. What do the latest numbers show?
The most effective method to Distinguish the Best Material Organization in Your Space
Are your hormones imbalanced? Doctors explain how to know if you need testing
The newest 'Project Hail Mary' trailer shows Ryan Gosling befriending an alien in Phil Lord and Chris Miller's space epic
Toyota Motor Europe to roll out smart EV charging through new partnerships
Pocket-Accommodating Jeep Wrangler Buying Guide for Seniors
Investigating Inside Plan and Home Style: Change Your Residing Space
Soldiers seize power in Guinea-Bissau and detain the president













